Reinforcement Learning (1): Q-Learning basics

Hi! In the following posts, I will introduce Q-Learning, the first part to learn if you want to pick up reinforcement learning. But before that, let us shed light on some fundamental concepts in reinforcement learning (RL). Kindergarten Example Q-Learning works in this way: do an action and get reward and observation from the environment,Continue reading “Reinforcement Learning (1): Q-Learning basics”

Slideshare (2): Machine Learning Recap Slides sharing

Few friends with me did some works together since last October. All of us were looking for jobs in machine learning or deep learning. We all agreed that we need to review some interesting algorithms together. We had a draft of machine learning algorithms (part 1) during this new year: Click here for a fullContinue reading “Slideshare (2): Machine Learning Recap Slides sharing”

Is your model good enough? Evaluation metrics in Classification and Regression

Was working on my research with sklearn, but realized that choosing the right evaluation metrics was always a problem to me. If someone asks me ,”does your model performs well?” The first thing in my mind is “accuracy”. Besides the accuracy, there are a lot, depending on your own problem.

Lucky or not: Monte Carlo Method

AlphaGo! When you play any games, probably you have strategies or experiences. But you could not deny that some times you need luck, which data scientists would say a “random choice”. Monte Carlo Method provides only an approximate optimizer, thus giving you the luck to win a game.