Understanding Variational Graph Auto-Encoders

Variational Auto-Encoders

My post about Auto-encoder.
For Variational Auto-Encoders (VAE) (from paper Auto-Encoding Variational Bayes), we actually add latent variables to the existing Autoencoders. The main idea is, we want to restrict the parameters from a known distribution. Why we want this? We wish the generative model to provide more “creative” things. If the model only sees the trained samples, it will eventually lose the ability to “create” more! So we add some “noises” to the parameters by forcing the parameters to adapt to a known distribution.

Continue reading “Understanding Variational Graph Auto-Encoders”

TensorFlow 08: save and restore a subset of variables

TensorFlow provides save and restore functions for us to save and re-use the model parameters. If you have a trained VGG model, for example, it will be helpful for you to restore the first few layers then apply them in your own networks. This may raise a problem, how do we restore a subset of the parameters? You can always check the TF official document here. In this post, I will take some code from the document and add some practical points.

Continue reading “TensorFlow 08: save and restore a subset of variables”

To copy or not, that is the question: copying mechanism

In our daily life, we always repeating something mentioned before in our dialogue, like the name of people or organizations. “Hi, my name is Pikachu”, “Hi, Pikachu,…” There is a high probability that the word “Pikachu” will not be in the vocabulary extracted from the training data. So in the paper (Incorporating Copying Mechanism in Sequence-to-Sequence Learning), the authors proposed CopyNet which brings copying mechanism to seq2seq models with encoder and decoder structure. Read from my old post to learn the prerequisite knowledge.

Continue reading “To copy or not, that is the question: copying mechanism”