Unsupervised Cross-Domain Prerequisite Chain Learning using Variational Graph Autoencoders

Irene Li, Vanessa Yan, Tianxiao Li, Rihao Qu and Dragomir Radev

Yale University, USA

ACL 2021

Motivation

Concept prerequisite chain learning: automatically determining the existence of prerequisite relationships among concept pairs.

Cross-domain prerequisite chains: borrow existing knowledge from the known domain.

Related Work

Prerequisite chain learning

Feature engineering and classifiers that determine if there's a prerequisite relation between any given concept pair: (Liu et al., 2016; Liang et al., 2017);

Materials including university course descriptions and materials as well as online educational data: (Liu et al., 2016; Liang et al., 2017).

Our previous work

Our previous work Li et al. (2019) and Li et al. (2020): applied GCN (Kipf and Welling, 2017), GAE and VGAE (Kipf and Welling, 2017) to predict relations in a concept graph.

In this work we introduce the new task cross-domain prerequisite chain learning.

LectureBank 2.0: A collection of English slides in NLP-related courses

Li et al., R-VGAE: Relational-variational Graph Autoencoder for Unsupervised Prerequisite Chain Learning, COLING 2020

Domain	#courses	#files	#tokens	#pages	#tokens/page
NLP	45	953	1,521,505	37,213	40.886
ML	15	312	722,438	12,556	57.537
DL	7	259	450,879	7,420	60.765
AI	5	98	139,778	3,732	37.454
IR	5	95	205,359	4,107	50.002
Overall	77	1,717	3,039,959	65,028	46.748

Table 1: Dataset Statistics. In each category, we have a given number of courses (#courses); each course consists of lecture files (#files); each lecture file has a number of individual slides (#pages). We also show the number of total tokens (#tokens) and average token number per slide (#tokens/page).

This work: LectureBank CD

Cross-domain version of LectureBank.

Covers 3 domains: NLP, CV and BIO.

Same annotation strategy.

Collected for cross-domain prerequisite chain learning research. [NLP-> CV and NLP -> BIO]

Domain	Files	Pages	Tks/pg	Con.	PosRel
NLP	1,717	65,028	47	322	1,551
CV	1,041	58,32	43	201	871
BIO	148	7,13	135	100	234

Comparison of statistics from NLP, CV and BIO datasets: Tks/pg (Tokens per slide page), Con. (Number of concepts), PosRel (Positive Relations).

https://github.com/Yale-LILY/LectureBank/tree/mast er/LectureBankCD

Proposed Method: Cross-domain Variational Graph Autoencoders (CD-VGAE)

CD-VGAE Model Illustration

We model the resource nodes (solid nodes) and concept nodes (hollow nodes) from two domains (in blue and orange) in a heterogeneous graph.

Node Feature (X)

Phrase2vec (Artetxe et al., 2018) BERT (Devlin et al., 2018)

 $A^{c,s}$ Annotated; $A^{r,c}A^r$ Cosine similarity; $A^{c,t}$ To be predicted.

CD-VGAE

Considering "domain neighbors" when doing Graph Convolution:

$$h_i^{(l+1)} = \sigma \left(\sum_{j \in N_i} W^{(l)} h_j^{(l)} + W^{(l)} h_i^{(l)} + \sum_{k \in N_i^D} W_D^{(l)} h_k^{(l)} \right)$$
 Information from its direct neighbors Node itself domain neighbors

Then we apply Cross-domain GCN as the encoder of a VGAE (Kipf and Welling, 2016) model to recover the adjacency matrix, evaluated on concept edges only.

Benchmark Evaluation

	NLP→CV				NLP→BIO			
Method	F1	Acc	Pre	Rec	F1	Acc	Pre	Rec
Baseline Models								
CLS + BERT	0.4277	0.5480	0.5743	0.3419	0.3930	0.6000	0.7481	0.2727
CLS + P2V	0.4881	0.5757	0.6106	0.4070	0.2222	0.5333	0.6000	0.1364
VGAE + BERT (Li et al., 2019)	0.5885	0.5477	0.5398	0.6488	0.6011	0.6091	0.6185	0.5909
VGAE + P2V (Li et al., 2019)	0.6202	0.5500	0.5368	0.7349	0.6177	0.6273	0.6521	0.6091
Proposed Method								
CD-VGAE + BERT	0.6391	0.5593	0.5441	0.7884	0.6289	0.6273	0.6425	0.6364
CD-VGAE + P2V	0.6754	0.5759	0.5468	0.8837	0.6512	0.6591	0.6667	0.6364
Supervised Performance -	Upper Bo	ound			400000	n and a second		
CLS + Node2vec (Grover and Leskovec, 2016)	0.8172	0.8197	0.8223	0.8140	0.8060	0.7956	0.7547	0.8727

Case Studies

Base	Image Representation Computer graphics Eye Tracking			
Image Representation OCR				
CD-VGAE	Ground Truth			
Video/Image augmentation	Video/Image augmentation			
Image Representation	Image Representation			
Face Detection	Face detection			
Emotion Recognition	Emotion Recognition			
Feature Extraction	Feature Extraction			
Feature Learning	Feature Learning			
OCR	OCR			
Computer Graphics	Computer Graphics			
Eye Tracking	Eye Tracking			

CV: Successors of the concept Image Processing

Bio: Case study of direct neighbors of BLAST, including successors and prerequisites.

Conclusion

- We propose cross-domain variational graph autoencoders to perform unsupervised prerequisite chain learning in a heterogeneous graph.
- We are the first to perform domain transfer within a single graph, to the best of our knowledge.
- We introduce the LectureBankCD dataset by collecting and annotating resources and concepts in two new target domains, promoting research on cross-domain prerequisite chain learning.

Thanks Q&A