NLP 05: From Word2vec to Doc2vec: a simple example with Gensim

  Introduction First introduced by Mikolov 1 in 2013, the word2vec is to learn distributed representations (word embeddings) when applying neural network. It is based on the distributed hypothesis that words occur in similar contexts (neighboring words) tend to have similar meanings. Two models here: cbow ( continuous bag of words) where we use aContinue reading “NLP 05: From Word2vec to Doc2vec: a simple example with Gensim”

Deep Learning 11: Energy-Based Learning (1)–What is EBL?

As a part of our goals, it is absolutely important to look back and think about the loss functions we applied, for example, the cross entropy. There are other types, however, targeting on different practical problems and you will need to think about which one is suitable. Besides, the Energy-Based Models (EBMs) provides more. TheseContinue reading “Deep Learning 11: Energy-Based Learning (1)–What is EBL?”

TensorFlow 05: Understanding Basic Usage

Until recently, I realized I missed some basics about TF. I went directly to the MNIST when I learned. Also, I asked few people if they have some nice tutorials for TF or for DL. Well, it is not like other modules, where you can easily find good ones like Andrew’s ML. But I didContinue reading “TensorFlow 05: Understanding Basic Usage”