Deep Learning 22: Diffusion Models (2)

Previously, we introduced Autoencoders and Hierarchical Variational Autoencoders (HVAEs). In this post, we will cover the details of Denoising Diffusion Probabilistic Models (DDPM). Diffusion Models We can treat DDPM as a restricted HVAE. Here, each only depends on . In DDPM, we do not have parameters to add noises, and it is a predefined GaussianContinue reading “Deep Learning 22: Diffusion Models (2)”