This post is the learning notes from Prof Hung-Yi Lee‘s lecture, the pdf could be found here (page40-52). I have read few articles, and I found this is a must-read. It is simple, and you can easily understand what is going on. I would say it is a good starting point for further readings. PaperContinue reading “Deep Learning 16: Understanding Capsule Nets”
Category Archives: Theory
Working with ROUGE 1.5.5 Evaluation Metric in Python
If you use ROUGE Evaluation metric for text summarization systems or machine translation systems, you must have noticed that there are many versions of them. So how to get it work with your own systems with Python? What packages are helpful? In this post, I will give some ideas based on engineering’s view (which meansContinue reading “Working with ROUGE 1.5.5 Evaluation Metric in Python”
Reinforcement Learning (1): Q-Learning basics
Hi! In the following posts, I will introduce Q-Learning, the first part to learn if you want to pick up reinforcement learning. But before that, let us shed light on some fundamental concepts in reinforcement learning (RL). Kindergarten Example Q-Learning works in this way: do an action and get reward and observation from the environment,Continue reading “Reinforcement Learning (1): Q-Learning basics”
Deep Learning 15: Unsupervised learning in DL? Try Autoencoder!
There are unsupervised learning models in multiple-level learning methods, for example, RBMs and Autoencoder. In brief, Autoencoder is trying to find a way to reconstruct the original inputs — another way to represent itself. In addition, it is useful for dimensionality reduction. For example, say there is a 32 * 32 -sized image, it isContinue reading “Deep Learning 15: Unsupervised learning in DL? Try Autoencoder!”
Slideshare (2): Machine Learning Recap Slides sharing
Few friends with me did some works together since last October. All of us were looking for jobs in machine learning or deep learning. We all agreed that we need to review some interesting algorithms together. We had a draft of machine learning algorithms (part 1) during this new year: Click here for a fullContinue reading “Slideshare (2): Machine Learning Recap Slides sharing”
Deep Learning 14 : Optimization, an Overview
As a cardinal part of deep learning or machine learning, optimization has long been a mathematical problem for researchers. Why we need optimization? Remember you have a loss function for linear regression, and then you would need to find the optimum of the function to minimize the square error, for example. You might also veryContinue reading “Deep Learning 14 : Optimization, an Overview”
Deep Learning 13: Understanding Generative Adversarial Network
Proposed in 2014, the interesting Generative Adversarial Network (GAN) has now many variants. You might not surprised that the relevant papers are more like statistics research. When a model was proposed, the evaluations would be based on some fundamental probability distributions, where generalized applications start.
Is your model good enough? Evaluation metrics in Classification and Regression
Was working on my research with sklearn, but realized that choosing the right evaluation metrics was always a problem to me. If someone asks me ,”does your model performs well?” The first thing in my mind is “accuracy”. Besides the accuracy, there are a lot, depending on your own problem.
Two sample problem(2): kernel function, feature space and reproducing kernel map
Find Two sample problem (1) here. We will take a look at RHKS (Reproducing Hilbert Kernel Space ) in this post. You might think of it a very statistical term but it is amazing because of various applications. You will need to refresh your mind for some linear algebra computations. We start with some basicContinue reading “Two sample problem(2): kernel function, feature space and reproducing kernel map”
Understanding SVM(2)
A brief Introduction here. (Wrote a blog about it last year, but do not think it is detailed.) This blog is learning notes from this video (English slides but Chinese speaker). First a quick introduction on SVM, then the magic of how to solve max/min values. Also, you could find Kernel SVM.
